Shortcuts

Source code for pypose.optim.strategy

import torch
from torch import nn, finfo


[docs]class Constant(object): r''' Constant damping strategy used in the Levenberg-Marquardt (LM) algorithm. Args: damping (float, optional): damping factor of LM optimizer. Default: 1e-6. Example: >>> class PoseInv(nn.Module): ... def __init__(self, *dim): ... super().__init__() ... self.pose = pp.Parameter(pp.randn_SE3(*dim)) ... ... def forward(self, inputs): ... return (self.pose @ inputs).Log().tensor() ... ... device = torch.device("cuda" if torch.cuda.is_available() else "cpu") ... inputs = pp.randn_SE3(2, 2).to(device) ... invnet = PoseInv(2, 2).to(device) ... strategy = pp.optim.strategy.Constant(damping=1e-6) ... optimizer = pp.optim.LM(invnet, strategy=strategy) ... ... for idx in range(10): ... loss = optimizer.step(inputs) ... print('Pose loss %.7f @ %dit'%(loss, idx)) ... if loss < 1e-5: ... print('Early Stoping!') ... print('Optimization Early Done with loss:', loss.item()) ... break Pose loss 0.0000000 @ 0it Early Stoping! Optimization Early Done with loss: 9.236661990819073e-10 Note: More details about optimization go to :meth:`pypose.optim.LevenbergMarquardt`. ''' def __init__(self, damping=1e-6): assert damping > 0, ValueError("damping has to be positive: {}".format(damping)) self.defaults = {'damping': damping} def update(self, pg, *args, **kwargs): pg['damping'] = pg['damping']
[docs]class Adaptive(object): r''' Adaptive damping strategy used in the Levenberg-Marquardt (LM) algorithm. It scales down the damping factor if the optimization step is very successful, unchanges the factor if the step is successful, and scales the factor up if the step is unsuccessful. .. math:: \begin{aligned} &\rule{113mm}{0.4pt} \\ &\textbf{input}: \lambda ~\text{(damping)}, \bm{f}(\bm{\theta})~(\text{model}), \theta_h~(\text{high}), \theta_l~(\text{low}), \delta_u~(\text{up}), \delta_d~(\text{down}), \\ &\hspace{13mm} \epsilon_{s}~(\text{min}), \epsilon_{l}~(\text{max}) \\ &\rule{113mm}{0.4pt} \\ &\rho = \frac{ \|\bm{f}(\bm{\theta})\|^2 - \|\bm{f}(\bm{\theta} + \delta)\|^2} {\|\bm{f}(\bm{\theta})\|^2 - \|\bm{f}(\bm{\theta}) + \mathbf{J}\delta\|^2} ~\text{(step quality)} \\ &\textbf{if} ~~ \rho > \theta_h ~ \text{(``very successful'' step)} \\ &\hspace{5mm} \lambda \leftarrow \delta_d \cdot \lambda \\ &\textbf{elif} ~~ \rho > \theta_l ~ \text{(``successful'' step)} \\ &\hspace{5mm} \lambda \leftarrow \lambda \\ &\textbf{else} ~ \text{(``unsuccessful'' step)} \\ &\hspace{5mm} \lambda \leftarrow \delta_u \cdot \lambda \\ &\lambda \leftarrow \mathrm{min}(\mathrm{max}(\lambda, \epsilon_{s}), \epsilon_{l}) \\ &\rule{113mm}{0.4pt} \\[-1.ex] &\textbf{return} \: \lambda \\[-1.ex] &\rule{113mm}{0.4pt} \\[-1.ex] \end{aligned} Args: damping (float, optional): initial damping factor of LM optimizer. Default: 1e-6. high (float, optional): high threshold for scaling down the damping factor. Default: 0.5. low (float, optional): low threshold for scaling up the damping factor. Default: 1e-3. down (float, optional): the down scaling factor in the range of :math:`(0,1)`. Default: 0.5. up (float, optional): the up scaling factor in the range of :math:`(1,\infty)`. Default: 2.0. min (float, optional): the lower-bound of damping factor. Default: 1e-6. max (float, optional): the upper-bound of damping factor. Default: 1e16. More details about the optimization process go to :meth:`pypose.optim.LevenbergMarquardt`. Note: For efficiency, we calculate the denominator of the step quality :math:`\rho` as .. math:: \begin{aligned} & \|\bm{f}(\bm{\theta})\|^2 - \|\bm{f}(\bm{\theta}) + \mathbf{J}\delta\|^2 \\ & = \bm{f}^T\bm{f} - \left( \bm{f}^T\bm{f} + 2 \bm{f}^T \delta + \delta^T \mathbf{J}^T\mathbf{J}\delta \right) \\ & = -(\mathbf{J} \delta)^T (2\bm{f} + \mathbf{J}\delta) \end{aligned} where :math:`\mathbf{J}` is the Jacobian of the model :math:`\bm{f}` at evaluation point :math:`\bm{\theta}`. Example: >>> class PoseInv(nn.Module): ... def __init__(self, *dim): ... super().__init__() ... self.pose = pp.Parameter(pp.randn_SE3(*dim)) ... ... def forward(self, inputs): ... return (self.pose @ inputs).Log().tensor() ... ... device = torch.device("cuda" if torch.cuda.is_available() else "cpu") ... inputs = pp.randn_SE3(2, 2).to(device) ... invnet = PoseInv(2, 2).to(device) ... strategy = pp.optim.strategy.Adaptive(damping=1e-6) ... optimizer = pp.optim.LM(invnet, strategy=strategy) ... ... for idx in range(10): ... loss = optimizer.step(inputs) ... print('Pose loss %.7f @ %dit'%(loss, idx)) ... if loss < 1e-5: ... print('Early Stoping!') ... print('Optimization Early Done with loss:', loss.item()) ... break Pose loss 0.0000000 @ 0it Early Stoping! Optimization Early Done with loss: 9.236661990819073e-10 ''' def __init__(self, damping=1e-6, high=0.5, low=1e-3, up=2., down=.5, min=1e-6, max=1e16): assert damping > 0, ValueError("damping has to be positive: {}".format(damping)) assert high > 0, ValueError("high has to be positive: {}".format(high)) assert low > 0, ValueError("low for decrease has to be positive: {}".format(low)) assert 0 < down < 1, ValueError("down factor has to be smaller than 1: {}".format(down)) assert 1 < up, ValueError("up factor has to be larger than 1: {}".format(up)) self.defaults = {'damping': damping, 'high': high, 'low': low, 'up': up, 'down': down} self.min, self.max = min, max def update(self, pg, last, loss, J, D, R, *args, **kwargs): quality = (last - loss) / -((J @ D).mT @ (2 * R + J @ D)).squeeze() if quality > pg['high']: pg['damping'] = pg['damping'] * pg['down'] elif quality > pg['low']: pg['damping'] = pg['damping'] else: pg['damping'] = pg['damping'] * pg['up'] pg['damping'] = max(self.min, min(pg['damping'], self.max))
[docs]class TrustRegion(object): r''' The trust region (TR) algorithm used in the Levenberg-Marquardt (LM) algorithm. .. math:: \begin{aligned} &\rule{113mm}{0.4pt} \\ &\textbf{input}: \Delta ~\text{(radius)}, \bm{f}(\bm{\theta})~(\text{model}), \theta_h~(\text{high}), \theta_l~(\text{low}), \delta_u~(\text{up}), \delta_d~(\text{down}), \\ &\hspace{13mm} \sigma~(\text{factor}), \epsilon_{s}~(\text{min}), \epsilon_{l}~(\text{max}) \\ &\rule{113mm}{0.4pt} \\ & \rho = \frac{ \|\bm{f}(\bm{\theta})\|^2 - \|\bm{f}(\bm{\theta} + \delta)\|^2} {\|\bm{f}(\bm{\theta})\|^2 - \|\bm{f}(\bm{\theta}) + \mathbf{J}\delta\|^2} ~\text{(step quality)} \\ &\textbf{if} ~~ \rho > \theta_h ~ \text{(``very successful'' step)} \\ &\hspace{5mm} \Delta \leftarrow \delta_u \cdot \Delta \\ &\hspace{5mm} \delta_d \leftarrow \delta_d^{\text{init}} \\ &\textbf{elif} ~~ \rho > \theta_l ~ \text{(``successful'' step)} \\ &\hspace{5mm} \Delta \leftarrow \Delta \\ &\hspace{5mm} \delta_d \leftarrow \delta_d^{\text{init}} \\ &\textbf{else} ~ \text{(``unsuccessful'' step)} \\ &\hspace{5mm} \Delta \leftarrow \delta_d \cdot \Delta \\ &\hspace{5mm} \delta_d \leftarrow \sigma \cdot \delta_d \\ &\Delta \leftarrow \mathrm{min}(\mathrm{max}(\Delta, \epsilon_{s}), \epsilon_{l}) \\ &\delta_d \leftarrow \mathrm{min}(\mathrm{max}(\delta_d, \epsilon_{s}), \epsilon_{l})\\ &\rule{113mm}{0.4pt} \\[-1.ex] &\textbf{return} \: \Delta, \delta_d \\[-1.ex] &\rule{113mm}{0.4pt} \\[-1.ex] \end{aligned} Args: radius (float, optional): the initial radius of the trust region (positive number). Default: 1e6. high (float, optional): high threshold for scaling down the damping factor. Default: 0.5. low (float, optional): low threshold for scaling up the damping factor. Default: 1e-3. up (float, optional): the up scaling factor in the range of :math:`(1,\infty)`. Default: 2.0. down (float, optional): the initial down scaling factor in range of :math:`(0,1)`. Default: 0.5. factor (float, optional): exponential factor for shrinking of the trust region. Default: 0.5. min (float, optional): the lower-bound of trust region radius and down scaling factor. Default: 1e-6. max (float, optional): the upper-bound of trust region radius and down scaling factor. Default: 1e16. More details about the optimization process go to :meth:`pypose.optim.LevenbergMarquardt`. Note: This implementation is an improved version of `TR in Ceres <https://tinyurl.com/38r8e77x>`_. For efficiency, we calculate the denominator of the step quality :math:`\rho` as .. math:: \begin{aligned} & \|\bm{f}(\bm{\theta})\|^2 - \|\bm{f}(\bm{\theta}) + \mathbf{J}\delta\|^2 \\ & = \bm{f}^T\bm{f} - \left( \bm{f}^T\bm{f} + 2 \bm{f}^T \delta + \delta^T \mathbf{J}^T\mathbf{J}\delta \right) \\ & = -(\mathbf{J} \delta)^T (2\bm{f} + \mathbf{J}\delta) \end{aligned} where :math:`\mathbf{J}` is the Jacobian of the model :math:`\bm{f}` at evaluation point :math:`\bm{\theta}`. Example: >>> class PoseInv(nn.Module): ... def __init__(self, *dim): ... super().__init__() ... self.pose = pp.Parameter(pp.randn_SE3(*dim)) ... ... def forward(self, inputs): ... return (self.pose @ inputs).Log().tensor() ... ... device = torch.device("cuda" if torch.cuda.is_available() else "cpu") ... inputs = pp.randn_SE3(2, 2).to(device) ... invnet = PoseInv(2, 2).to(device) ... strategy = pp.optim.strategy.TrustRegion(radius=1e6) ... optimizer = pp.optim.LM(invnet, strategy=strategy) ... ... for idx in range(10): ... loss = optimizer.step(inputs) ... print('Pose loss %.7f @ %dit'%(loss, idx)) ... if loss < 1e-5: ... print('Early Stoping!') ... print('Optimization Early Done with loss:', loss.item()) ... break Pose loss 0.0000000 @ 0it Early Stoping! Optimization Early Done with loss: 7.462681583803032e-10 ''' def __init__(self, radius=1e6, high=.5, low=1e-3, up=2., down=.5, factor=.5, min=1e-6, max=1e16): super().__init__() assert radius > 0, ValueError("trust region radius has to be positive: {}".format(radius)) assert high > 0, ValueError("high has to be positive: {}".format(high)) assert low > 0, ValueError("low for decrease has to be positive: {}".format(low)) assert 0 < down < 1, ValueError("down factor has to be smaller than 1: {}".format(down)) assert 1 < up, ValueError("up factor has to be larger than 1: {}".format(up)) assert 0 < factor < 1, ValueError("factor has to be smaller than 1: {}".format(factor)) self.min, self.max, damping, self.down = min, max, 1 / radius, down self.defaults = {'radius':radius, 'damping':damping, 'high':high, 'low':low, 'up':up, 'down': down, 'factor':factor} def update(self, pg, last, loss, J, D, R, *args, **kwargs): quality = (last - loss) / -((J @ D).mT @ (2 * R + J @ D)).squeeze() pg['radius'] = 1. / pg['damping'] if quality > pg['high']: pg['radius'] = pg['up'] * pg['radius'] pg['down'] = self.down elif quality > pg['low']: pg['radius'] = pg['radius'] pg['down'] = self.down else: pg['radius'] = pg['radius'] * pg['down'] pg['down'] = pg['down'] * pg['factor'] pg['down'] = max(self.min, min(pg['down'], self.max)) pg['radius'] = max(self.min, min(pg['radius'], self.max)) pg['damping'] = 1. / pg['radius']

Docs

Access documentation for PyPose

View Docs

Tutorials

Get started with tutorials and examples

View Tutorials

Get Started

Find resources and how to start using pypose

View Resources