pypose.SE3 = functools.partial(<class 'pypose.lietensor.lietensor.LieTensor'>, ltype=<pypose.lietensor.lietensor.SE3Type object>)

Alias of SE3 type LieTensor.


data (Tensor, or list, or ‘int…’) –

A Tensor object, or constructing a Tensor object from list, which defines tensor data (see below), or from ‘int…’, which defines tensor shape.

The shape of Tensor object must be (*, 7), where * is empty, one, or more batched dimensions (the lshape of this LieTensor), otherwise error will be raised.

Internally, SE3 LieTensors are stored by concatenating the unit quaternion representing the rotation with a vector representing the translation.

\[\mathrm{data}[*, :] = [t_x, t_y, t_z, q_x, q_y, q_z, q_w], \]

where \(\begin{pmatrix} t_x & t_y & t_z \end{pmatrix}\top \in \mathbb{R}^3\) is the translation and \(\begin{pmatrix} q_x & q_y & q_z & q_w \end{pmatrix}\top\) is the unit quaternion as in pypose.SO3.


>>> pp.SE3(torch.randn(2, 7))
SE3Type LieTensor:
tensor([[ 0.1626,  1.6349,  0.3607,  0.2848, -0.0948,  0.1541,  1.0003],
        [ 1.4034, -1.3085, -0.8886, -1.6703,  0.7381,  1.5575,  0.6280]])
>>> pp.SE3([0, 0, 0, 0, 0, 0, 1])
SE3Type LieTensor:
tensor([0., 0., 0., 0., 0., 0., 1.])

If data is tensor-like, the last dimension should correspond to the 7 elements of the above embedding.


It is not advised to construct SE3 Tensors by specifying storage sizes with ‘int…’, which does not initialize data.

Consider using pypose.randn_SE3 or pypose.identity_SE3 instead.

See pypose.Log, pypose.Inv, pypose.Act, pypose.Retr, pypose.Adj, pypose.AdjT, pypose.Jinvp for implementations of relevant operations.


Access documentation for PyPose

View Docs


Get started with tutorials and examples

View Tutorials

Get Started

Find resources and how to start using pypose

View Resources