Shortcuts

# pypose.Sim3¶

pypose.Sim3 = functools.partial(<class 'pypose.lietensor.lietensor.LieTensor'>, ltype=<pypose.lietensor.lietensor.Sim3Type object>)

Alias of Sim3 type LieTensor.

Parameters

data (Tensor, or list, or ‘int…’) –

A Tensor object, or constructing a Tensor object from list, which defines tensor data (see below), or from ‘int…’, which defines tensor shape.

The shape of Tensor object must be (*, 8), where * is empty, one, or more batched dimensions (the lshape of this LieTensor), otherwise error will be raised.

Internally, Sim3 LieTensors are stored by concatenating the translation vector with an RxSO3:

$\mathrm{data}[*, :] = [t_x, t_y, t_z, q_x, q_y, q_z, q_w, s],$

where $$\begin{pmatrix} t_x & t_y & t_z \end{pmatrix}^T \in \mathbb{R}^3$$ is the translation vector and $$\begin{pmatrix} q_x & q_y & q_z & q_w \end{pmatrix}^T$$ and $$s \in \mathbb{R}$$ are the unit quaternion and the scaling factor as in pp.RxSO3, respectively.

Examples

>>> pp.Sim3(torch.randn(2, 8))
Sim3Type LieTensor:
tensor([[ 0.0175,  0.8657, -0.2274,  2.2380, -0.0297, -0.3799, -0.0664,  0.9995],
[ 0.8744,  0.4114,  1.2041, -0.5687, -0.5630,  0.6025, -0.6137,  1.1185]])
>>> pp.Sim3([0, 0, 0, 0, 0, 0, 1, 1])
Sim3Type LieTensor:
tensor([0., 0., 0., 0., 0., 0., 1., 1.])


If data is tensor-like, the last dimension should correspond to the 8 elements of the above embedding.

Note

It is not advised to construct Sim3 Tensors by specifying storage sizes with ‘int…’, which does not initialize data.

Consider using pypose.randn_Sim3 or pypose.identity_Sim3 instead.

See pypose.Log, pypose.Inv, pypose.Act, pypose.Retr, pypose.Adj, pypose.AdjT, pypose.Jinvp for implementations of relevant operations.

## Docs

Access documentation for PyPose

View Docs

## Tutorials

Get started with tutorials and examples

View Tutorials

## Get Started

Find resources and how to start using pypose

View Resources