pypose.mat2RxSO3¶
- pypose.mat2RxSO3(mat, check=True, rtol=1e-05, atol=1e-05)[source]¶
Convert batched rotation or transformation matrices to RxSO3Type LieTensor.
- Parameters
mat (Tensor) – the batched matrices to convert. If input is of shape
(*, 3, 4)
or(*, 4, 4)
, only the top left 3x3 submatrix is used.check (bool, optional) – flag to check if the input is valid rotation matrices (orthogonal and with a determinant of one). Set to
False
if less computation is needed. Default:True
.rtol (float, optional) – relative tolerance when check is enabled. Default: 1e-05
atol (float, optional) – absolute tolerance when check is enabled. Default: 1e-05
- Returns
the converted RxSO3Type LieTensor.
- Return type
- Shape:
Input:
(*, 3, 3)
or(*, 3, 4)
or(*, 4, 4)
Output:
(*, 5)
Let the input be matrix \(\mathbf{T}\), \(\mathbf{T}_i\) represents each individual matrix in the batch. \(\mathbf{T}^{m,n}_i\) represents the \(m^{\mathrm{th}}\) row and \(n^{\mathrm{th}}\) column of \(\mathbf{T}_i\), \(m,n\geq 1\), then the scaling factor \(s_i\in\mathbb{R}\) and the rotation matrix \(\mathbf{R}_i\in\mathbb{R}^{3\times 3}\) can be computed as:
\[\begin{aligned} s_i &= \sqrt[3]{\vert \mathbf{T_i} \vert}\\ \mathbf{R}_i &= \mathbf{R}_i/s_i \end{aligned}, \]the translation and quaternion can be computed by:
\[\left\{\begin{aligned} q^x_i &= \mathrm{sign}(\mathbf{R}^{2,3}_i - \mathbf{R}^{3,2}_i) \frac{1}{2} \sqrt{1 + \mathbf{R}^{1,1}_i - \mathbf{R}^{2,2}_i - \mathbf{R}^{3,3}_i}\\ q^y_i &= \mathrm{sign}(\mathbf{R}^{3,1}_i - \mathbf{R}^{1,3}_i) \frac{1}{2} \sqrt{1 - \mathbf{R}^{1,1}_i + \mathbf{R}^{2,2}_i - \mathbf{R}^{3,3}_i}\\ q^z_i &= \mathrm{sign}(\mathbf{R}^{1,2}_i - \mathbf{R}^{2,1}_i) \frac{1}{2} \sqrt{1 - \mathbf{R}^{1,1}_i - \mathbf{R}^{2,2}_i + \mathbf{R}^{3,3}_i}\\ q^w_i &= \frac{1}{2} \sqrt{1 + \mathbf{R}^{1,1}_i + \mathbf{R}^{2,2}_i + \mathbf{R}^{3,3}_i} \end{aligned}\right., \]In summary, the output LieTensor should be of format:
\[\textbf{y}_i = [q^x_i, q^y_i, q^z_i, q^w_i, s_i] \]Warning
Numerically, a transformation matrix is considered legal if:
\[\vert s \vert > \texttt{atol} \\ |{\rm det}(\mathbf{R}) - 1| \leq \texttt{atol} + \texttt{rtol}\times 1\\ |\mathbf{RR}^{T} - \mathbf{I}| \leq \texttt{atol} + \texttt{rtol}\times \mathbf{I} \]where \(|\cdot |\) is element-wise absolute function. When
check
is set toTrue
, illegal input will raise aValueError
. Otherwise, no data validation is performed. Illegal input will output an irrelevant result, which likely containsnan
.Examples
>>> input = torch.tensor([[ 0., -0.5, 0.], ... [0.5, 0., 0.], ... [ 0., 0., 0.5]]) >>> pp.mat2RxSO3(input) RxSO3Type LieTensor: tensor([0.0000, 0.0000, 0.7071, 0.7071, 0.5000])
Note
The individual matrix in a batch can be written as: \(s\mathbf{R}_{3\times3}\), where \(\mathbf{R}\) is the rotation matrix. where the scaling factor \(s\) defines a linear transformation that enlarges or diminishes the object in the same ratio across 3 dimensions.
See
pypose.RxSO3()
for more details of the output LieTensor format.