Shortcuts

pypose.mat2RxSO3¶

pypose.mat2RxSO3(mat, check=True, rtol=1e-05, atol=1e-05)[source]

Convert batched rotation or transformation matrices to RxSO3Type LieTensor.

Parameters
• mat (Tensor) – the batched matrices to convert. If input is of shape (*, 3, 4) or (*, 4, 4), only the top left 3x3 submatrix is used.

• check (bool, optional) – flag to check if the input is valid rotation matrices (orthogonal and with a determinant of one). Set to False if less computation is needed. Default: True.

• rtol (float, optional) – relative tolerance when check is enabled. Default: 1e-05

• atol (float, optional) – absolute tolerance when check is enabled. Default: 1e-05

Returns

the converted RxSO3Type LieTensor.

Return type

LieTensor

Shape:

Input: (*, 3, 3) or (*, 3, 4) or (*, 4, 4)

Output: (*, 5)

Let the input be matrix $$\mathbf{T}$$, $$\mathbf{T}_i$$ represents each individual matrix in the batch. $$\mathbf{T}^{m,n}_i$$ represents the $$m^{\mathrm{th}}$$ row and $$n^{\mathrm{th}}$$ column of $$\mathbf{T}_i$$, $$m,n\geq 1$$, then the scaling factor $$s_i\in\mathbb{R}$$ and the rotation matrix $$\mathbf{R}_i\in\mathbb{R}^{3\times 3}$$ can be computed as:

\begin{aligned} s_i &= \sqrt[3]{\vert \mathbf{T_i} \vert}\\ \mathbf{R}_i &= \mathbf{R}_i/s_i \end{aligned},

the translation and quaternion can be computed by:

\left\{\begin{aligned} q^x_i &= \mathrm{sign}(\mathbf{R}^{2,3}_i - \mathbf{R}^{3,2}_i) \frac{1}{2} \sqrt{1 + \mathbf{R}^{1,1}_i - \mathbf{R}^{2,2}_i - \mathbf{R}^{3,3}_i}\\ q^y_i &= \mathrm{sign}(\mathbf{R}^{3,1}_i - \mathbf{R}^{1,3}_i) \frac{1}{2} \sqrt{1 - \mathbf{R}^{1,1}_i + \mathbf{R}^{2,2}_i - \mathbf{R}^{3,3}_i}\\ q^z_i &= \mathrm{sign}(\mathbf{R}^{1,2}_i - \mathbf{R}^{2,1}_i) \frac{1}{2} \sqrt{1 - \mathbf{R}^{1,1}_i - \mathbf{R}^{2,2}_i + \mathbf{R}^{3,3}_i}\\ q^w_i &= \frac{1}{2} \sqrt{1 + \mathbf{R}^{1,1}_i + \mathbf{R}^{2,2}_i + \mathbf{R}^{3,3}_i} \end{aligned}\right.,

In summary, the output LieTensor should be of format:

$\textbf{y}_i = [q^x_i, q^y_i, q^z_i, q^w_i, s_i]$

Warning

Numerically, a transformation matrix is considered legal if:

$\vert s \vert > \texttt{atol} \\ |{\rm det}(\mathbf{R}) - 1| \leq \texttt{atol} + \texttt{rtol}\times 1\\ |\mathbf{RR}^{T} - \mathbf{I}| \leq \texttt{atol} + \texttt{rtol}\times \mathbf{I}$

where $$|\cdot |$$ is element-wise absolute function. When check is set to True, illegal input will raise a ValueError. Otherwise, no data validation is performed. Illegal input will output an irrelevant result, which likely contains nan.

Examples

>>> input = torch.tensor([[ 0., -0.5,  0.],
...                       [0.5,   0.,  0.],
...                       [ 0.,   0., 0.5]])
>>> pp.mat2RxSO3(input)
RxSO3Type LieTensor:
tensor([0.0000, 0.0000, 0.7071, 0.7071, 0.5000])


Note

The individual matrix in a batch can be written as: $$s\mathbf{R}_{3\times3}$$, where $$\mathbf{R}$$ is the rotation matrix. where the scaling factor $$s$$ defines a linear transformation that enlarges or diminishes the object in the same ratio across 3 dimensions.

See pypose.RxSO3() for more details of the output LieTensor format.

Docs

Access documentation for PyPose

View Docs

Tutorials

Get started with tutorials and examples

View Tutorials

Get Started

Find resources and how to start using pypose

View Resources