Shortcuts

pypose.mat2SO3¶

pypose.mat2SO3(mat, check=True, rtol=1e-05, atol=1e-05)[source]

Convert batched rotation or transformation matrices to SO3Type LieTensor.

Parameters
• mat (Tensor) – the batched matrices to convert. If input is of shape (*, 3, 4) or (*, 4, 4), only the top left 3x3 submatrix is used.

• check (bool, optional) – flag to check if the input is valid rotation matrices (orthogonal and with a determinant of one). Set to False if less computation is needed. Default: True.

• rtol (float, optional) – relative tolerance when check is enabled. Default: 1e-05

• atol (float, optional) – absolute tolerance when check is enabled. Default: 1e-05

Returns

the converted SO3Type LieTensor.

Return type

LieTensor

Shape:

Input: (*, 3, 3) or (*, 3, 4) or (*, 4, 4)

Output: (*, 4)

Let the input be matrix $$\mathbf{R}$$, $$\mathbf{R}_i$$ represents each individual matrix in the batch. $$\mathbf{R}^{m,n}_i$$ represents the $$m^{\mathrm{th}}$$ row and $$n^{\mathrm{th}}$$ column of $$\mathbf{R}_i$$, $$m,n\geq 1$$, then the quaternion can be computed by:

\left\{\begin{aligned} q^x_i &= \mathrm{sign}(\mathbf{R}^{2,3}_i - \mathbf{R}^{3,2}_i) \frac{1}{2} \sqrt{1 + \mathbf{R}^{1,1}_i - \mathbf{R}^{2,2}_i - \mathbf{R}^{3,3}_i}\\ q^y_i &= \mathrm{sign}(\mathbf{R}^{3,1}_i - \mathbf{R}^{1,3}_i) \frac{1}{2} \sqrt{1 - \mathbf{R}^{1,1}_i + \mathbf{R}^{2,2}_i - \mathbf{R}^{3,3}_i}\\ q^z_i &= \mathrm{sign}(\mathbf{R}^{1,2}_i - \mathbf{R}^{2,1}_i) \frac{1}{2} \sqrt{1 - \mathbf{R}^{1,1}_i - \mathbf{R}^{2,2}_i + \mathbf{R}^{3,3}_i}\\ q^w_i &= \frac{1}{2} \sqrt{1 + \mathbf{R}^{1,1}_i + \mathbf{R}^{2,2}_i + \mathbf{R}^{3,3}_i} \end{aligned}\right.,

In summary, the output LieTensor should be of format:

$\textbf{y}_i = [q^x_i, q^y_i, q^z_i, q^w_i]$

Warning

Numerically, a transformation matrix is considered legal if:

$|{\rm det}(\mathbf{R}) - 1| \leq \texttt{atol} + \texttt{rtol}\times 1\\ |\mathbf{RR}^{T} - \mathbf{I}| \leq \texttt{atol} + \texttt{rtol}\times \mathbf{I}$

where $$|\cdot |$$ is element-wise absolute function. When check is set to True, illegal input will raise a ValueError. Otherwise, no data validation is performed. Illegal input will output an irrelevant result, which likely contains nan.

Examples

>>> input = torch.tensor([[0., -1.,  0.],
...                       [1.,  0.,  0.],
...                       [0.,  0.,  1.]])
>>> pp.mat2SO3(input)
SO3Type LieTensor:
tensor([0.0000, 0.0000, 0.7071, 0.7071])


See pypose.SO3() for more details of the output LieTensor format.

Docs

Access documentation for PyPose

View Docs

Tutorials

Get started with tutorials and examples

View Tutorials

Get Started

Find resources and how to start using pypose

View Resources