Shortcuts

# LieTensor Tutorial¶

Uncomment this if you’re using google colab to run this script

# !pip install pypose


LieTensor is the cornerstone of PyPose project. LieTensor is derived from torch.tensor. it represents Lie Algebra or Lie Group. It support all the torch.tensor features and also specific features for Lie Theory.

We will see eventually in this tutorial that, with LieTensor, one could easily implement operations often used in robotics applications.

In PyPose, we would want to utilize the powerful network training API the comes with PyTorch. So, we will go a step further to see how we can use LieTensor in training a simple network.

import torch
import pypose as pp


## 1. Intialization¶

The first thing we need to know is how to initialize a LieTensor. Use pypose.LieTensor or alias like pypose.so3, specify the data and ltpye. See list of ltype here.

Note that the last dimension of data has to align with the LieTensor.ltype.dimension because LieTensor has different length with respect to different ltype. Here we have a (2,3) shaped tensor, because so3_type requires a dimension of 3 for each element.

It is recommanded to use alias to initialize LieTensor.

data = torch.randn(2, 3, requires_grad=True, device='cuda:0')
a = pp.LieTensor(data, ltype=pp.so3_type)
print('a:', a)
b = pp.so3(data)
print('b:', b)

a: so3Type LieTensor:
LieTensor([[ 0.8837, -0.0328,  0.8041],
[ 1.3325,  1.2731, -0.2630]], device='cuda:0',
b: so3Type LieTensor:
LieTensor([[ 0.8837, -0.0328,  0.8041],
[ 1.3325,  1.2731, -0.2630]], device='cuda:0',


Like PyTorch, you can initialize an identity LieTensor or a random LieTensor. Use the function related to each ltype. For example, here we used pypose.identity_SE3 and pypose.randn_se3. The usage is similar with torch.randn, except the shape we input is lshape. The only difference between LieTensor.lshape and tensor.shape is the last dimension is hidden, since lshape takes the last dimension as a single ltype item.

You might notice the case difference here. In PyPose, uppercase refers to Lie Group, and lowercase refers to Lie Algebra. It is recommanded to use Lie Group, unless Lie Algebra is absolutely necessary.

LieTensor.lview here is used to change the shape of a LieTensor, similar to torch.view. The difference is that LieTensor.lview does not modify the last dimension. It is intuitive since we need each element in x stays a SE3 ltype.

x = pp.identity_SE3(2,1)
y = pp.randn_se3(2,2)
print('x.shape:', x.shape, '\nx.gshape:', x.lshape)
print(x.lview(2))
print(y)

x.shape: torch.Size([2, 1, 7])
x.gshape: torch.Size([2, 1])
SE3Type LieTensor:
LieTensor([[0., 0., 0., 0., 0., 0., 1.],
[0., 0., 0., 0., 0., 0., 1.]])
se3Type LieTensor:
LieTensor([[[-0.2927,  0.9180,  0.7799, -0.1386, -0.0364, -0.0509],
[ 0.2092,  0.3220, -2.3106,  0.3449,  0.2309, -0.1783]],

[[-0.5513,  0.1097,  0.0892, -0.3271,  0.2301,  0.3649],
[-2.2766, -1.1630,  0.6606,  0.1979, -0.3437, -0.4147]]])


## 2. All arguments in PyTorch are supported¶

LieTensor is derived from torch.tensor, so it inherit all the attributes of a tensor. You could specify device, dtype, and requires_grad during the initialization, just like PyTorch.

a = pp.randn_SO3(3, device="cuda:0", dtype=torch.double, requires_grad=True)
b = pp.identity_like(a, device="cpu")
a, b

(SO3Type LieTensor:
LieTensor([[ 0.4589,  0.1967, -0.4157,  0.7602],
[ 0.3526, -0.0463,  0.4711,  0.8072],
[-0.7619, -0.2284,  0.1162,  0.5949]], device='cuda:0',
LieTensor([[0., 0., 0., 1.],
[0., 0., 0., 1.],
[0., 0., 0., 1.]]))


And also, easy data type transform.

t = a.float()
a, t

(SO3Type LieTensor:
LieTensor([[ 0.4589,  0.1967, -0.4157,  0.7602],
[ 0.3526, -0.0463,  0.4711,  0.8072],
[-0.7619, -0.2284,  0.1162,  0.5949]], device='cuda:0',
LieTensor([[ 0.4589,  0.1967, -0.4157,  0.7602],
[ 0.3526, -0.0463,  0.4711,  0.8072],
[-0.7619, -0.2284,  0.1162,  0.5949]], device='cuda:0',


Slicing and Shaping LieTensor concatination is also the same as Pytorch.

A = pp.randn_SO3(2,2)
B = pp.randn_SO3(2,1)
C = torch.cat([A,B], dim=1)         # Tensor cat
C[0,1] = pp.randn_SO3(1)            # Slicing set
D = C[1,:].Log()                    # Slicing get
E, F = torch.split(C, [1,2], dim=1) # Tensor split
print('A:', A.lshape)
print('B:', B.lshape)
print('C:', C.lshape)
print('D:', D.lshape)
print('E:', E.lshape)
print('F:', F.lshape)

A: torch.Size([2, 2])
B: torch.Size([2, 1])
C: torch.Size([2, 3])
D: torch.Size([3])
E: torch.Size([2, 1])
F: torch.Size([2, 2])


## 3. Exponential, Logarithm and Inversion Function¶

LieTensor.Exp is the Exponential function defined in Lie Theory, which transform a input Lie Algebra to Lie Group. LieTensor.Log is the Logarithm function, whcih transform Lie Group back to Lie Algebra. See the doc of LieTensor.Exp and LieTensor.Log for the math.

LieTensor.Inv gives us the inversion of a LieTensor. Assume you have a LieTensor of pypose.so3_type representing a rotation $${\rm R}$$, the Inv will give you $${\rm R^{-1}}$$. See LieTensor.Inv.

(x * y.Exp()).Inv().Log()

se3Type LieTensor:
LieTensor([[[ 0.2927, -0.9180, -0.7799,  0.1386,  0.0364,  0.0509],
[-0.2092, -0.3220,  2.3106, -0.3449, -0.2309,  0.1783]],

[[ 0.5513, -0.1097, -0.0892,  0.3271, -0.2301, -0.3649],
[ 2.2766,  1.1630, -0.6606, -0.1979,  0.3437,  0.4147]]])


We also have adjoint operations. Assume X is a Lie Group, and a is a small left increment in Lie Algebra. Adjoint operation will input a and output a right increment b that gives ther same transformation. See pypose.Adj for more details.

X = pp.randn_Sim3(6, dtype=torch.double)
a = pp.randn_sim3(6, dtype=torch.double)
print((X * b.Exp() - a.Exp() * X).abs().mean() < 1e-7)

X = pp.randn_SE3(8)
a = pp.randn_se3(8)
print((b.Exp() * X - X * a.Exp()).abs().mean() < 1e-7)

tensor(True)
tensor(True)


## 5. Grdients¶

As mentioned at the beginning, we would want to utilize the powerful network training API the comes with PyTorch. We might want to start by calculating gradients, which is a core step of any network training. First, we need to initialize the LieTensor of which we want to get gradients. Remember to set requires_grad=True.

x = pp.randn_so3(3, sigma=0.1, requires_grad=True, device="cuda")
assert x.is_leaf


And, just like in PyTorch, we will define a loss, and call loss.backward. That’s it. Exactly the same with PyTorch.

loss = (x.Exp().Log()**2).sin().sum() # Just test, No physical meaning
loss.backward()
y = x.detach()

(tensor(0.0499, device='cuda:0', grad_fn=<SumBackward0>), tensor([[ 0.2864, -0.3138,  0.0028],
[ 0.0393, -0.0210, -0.0566],
[-0.0808,  0.0492, -0.0706]], device='cuda:0'), so3Type LieTensor:
LieTensor([[ 0.1432, -0.1569,  0.0014],
[ 0.0197, -0.0105, -0.0283],
[-0.0404,  0.0246, -0.0353]], device='cuda:0', requires_grad=True), so3Type LieTensor:
LieTensor([[ 0.1432, -0.1569,  0.0014],
[ 0.0197, -0.0105, -0.0283],
[-0.0404,  0.0246, -0.0353]], device='cuda:0'))


## 6. Test a Module¶

Now that we know all the basic operations, we might start ahead to build our first network. First of all, we define our TestNet as follows. Still, it doesn’t have any physical meaning.

from torch import nn

def count_parameters(model):
return sum(p.numel() for p in model.parameters() if p.requires_grad)

class TestNet(nn.Module):
def __init__(self, n):
super().__init__()
self.weight = pp.Parameter(pp.randn_so3(n))

def forward(self, x):
return self.weight.Exp() * x


Like PyTorch, we instantiate our network, optimizer, and scheduler. Scheduler here is to control the learning rate, see lr_scheduler.MultiStepLR for more detail.

Then, inside the loop, we run our training. If you are not familiar with the training process, we would recommand you reading one of the PyTorch tutorial, like this.

n,epoch = 4, 5
net = TestNet(n).cuda()

optimizer = torch.optim.SGD(net.parameters(), lr = 0.2, momentum=0.9)
scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=[2,4], gamma=0.5)

print("Before Optimization:\n", net.weight)
for i in range(epoch):
inputs = pp.randn_SO3(n).cuda()
outputs = net(inputs)
loss = outputs.abs().sum()
loss.backward()
optimizer.step()
scheduler.step()
print(loss)

print("Parameter:", count_parameters(net))
print("After Optimization:\n", net.weight)

Before Optimization:
so3Type Parameter:
Parameter containing:
Parameter(Parameter([[ 0.7052,  0.2846,  0.1662],
[ 0.6597,  0.1625, -1.1947],
[-0.6071,  0.4234, -0.1463],
[ 0.6531,  0.0366, -0.3926]], device='cuda:0', requires_grad=True))
Parameter: 12
After Optimization:
so3Type Parameter:
Parameter containing:
Parameter(Parameter([[-0.6589,  0.1844,  0.0655],
[-0.5309,  0.1576,  0.0722],
[-0.0647, -0.2265,  0.0657],
[ 0.2051,  0.1157,  0.3390]], device='cuda:0', requires_grad=True))


And then we are finished with our LieTensor tutorial. Hopefully you are more familiar with it by now.

Now you may be free to explore other tutorials. See How PyPose can be utilized in real robotics applications.

Total running time of the script: ( 0 minutes 0.075 seconds)

Gallery generated by Sphinx-Gallery

## Docs

Access documentation for PyPose

View Docs

## Tutorials

Get started with tutorials and examples

View Tutorials

## Get Started

Find resources and how to start using pypose

View Resources